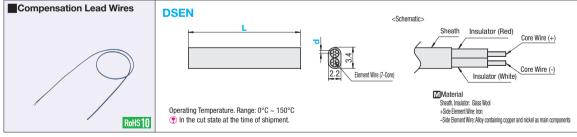

Sheathed Thermocouples, Compensation Lead Wires

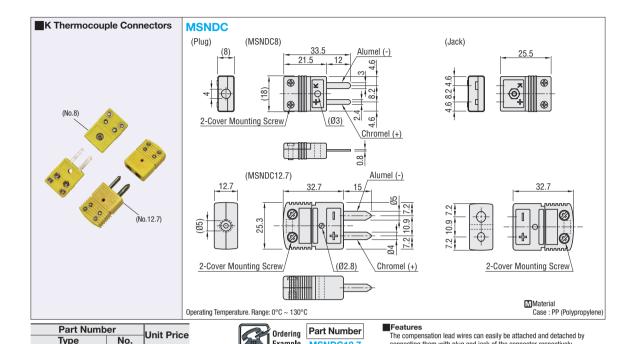
K Thermocouple Connectors, Bimetal Thermostats


Part Number		L 1mm Increment	Unit Price					
Type Dia. of			MSEN			MSEW		
Туре	Element Wire d	min increment	L200~1000	L1001~2000	L2001~3000	L200~1000	L1001~2000	L2001~3000
MSEN MSEW	0.32	200~3000						

Features

· Since the temperature measuring point is exposed, the reaction speed is faster than that of the sheathed type Temperature measurement can be conducted based on the above measuring point of the tested object.

Before using MSEN, expose alumel and chromel and twist/weld them to create the temperature measuring point.

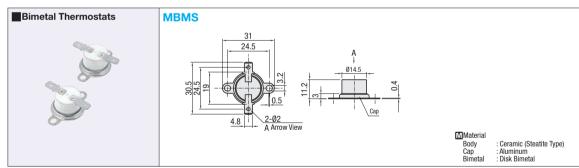


Part Number	L	Unit Price			
Туре	Dia. of Element Wire d	0.1m Increment	L1.0~3.9	L4.0~6.9	L7.0~10.0
DSEN	0.32	1.0~10.0			

 It can be used as a lead wire of sheathed thermocouples. Also can be used to extend temperature sensor (K thermocouple) on P.1654~1663.

Ordering Part Number -

DSEN0.32



■How to Use

Type

MSNDC

- Peel off the sheath of compensation lead wires. (Approx. 7mm)
- (2) Loosen the screw on connector by the screwdriver, and remove the cover.
- 3 Loosen the screw in the connector and connect the + (Red) and (White) of
- compensation lead wires to the + and terminals of the connector, respectively. 4 Confirm the screws are securely tightened, then install the cover.

Example

Part Nur	nber	Rated Operating	Linit Drice		
Type	No.	OFF ON		Unit Price	
MBMS	080	80±5	65±8		
	100	100±5	80±8		
	120	120±6	100±10		
	140	140±6	120±15		
	160	160±6	135±15		
	180	180±8	140±15		
	200	200±10	160±20		

(Structure)

Principle of Operation: Birnetal Non-energizing Type, Single Pole Single Throw, Operating Temperature One Point Fixed Type

Operating Method: OFF when temperature rises, and ON when temperature drops (Electric Rating)

Resistive Load AC125V/10A AC250V/5.0A (Minimum Current: 0.1A)

(Contact Resistance) 50mΩ or less according to minute current ohmmeter (DC6V/0.1A) (Initial Value) (Insulation Resistance)

 $100M\Omega$ or more in DC500V mega in the charge part and non-charge part (Insulation Resistance)

AC1500V/min or AC1800V/sec in the charge part and non-charge part (Leakage current: 10mA)

The thermal ON/OFF operation is done 10,000 times at the load of rated current

Insulation Resistance: $50M\Omega$; Contact resistance: $100m\Omega$ or less

• It energizes (NC) when the power is turned on and the contact point shuts off when it reaches to the operation temperature rate (OFF) and electricity is turned off. It automatically recovers when it is below the rated operating temperature.

connecting them with plug and jack of the connector respectively.

2 -1663